Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member types access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Quarterly Journal of Engineering Geology and Hydrogeology
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Quarterly Journal of Engineering Geology and Hydrogeology

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member types access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

A newly developed soil abrasion testing method for tunnelling using shield machines

Ghodrat Barzegari, Ali Uromeihy and Jian Zhao
Quarterly Journal of Engineering Geology and Hydrogeology, 46, 63-74, 12 February 2013, https://doi.org/10.1144/qjegh2012-039
Ghodrat Barzegari
1Department of Engineering Geology, Tarbiat Modares University, Tehran, Iran
  • Find this author on Google Scholar
  • Search for this author on this site
Ali Uromeihy
1Department of Engineering Geology, Tarbiat Modares University, Tehran, Iran
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: uromeiea@modares.ac.ir
Jian Zhao
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The importance of the effect of ground abrasivity on the performance of a tunnel boring machine (TBM) is important for many tunnelling projects. In recent years, many abrasivity devices have been developed to measure soil abrasivity for specific conditions. In this paper a new device is developed to estimate the abrasivity of the soil for a wide range of site conditions. The device is designed on the basis of simulating the site conditions regarding the ground water, ground stresses and confining pressure of the TBM chamber, and the performance of the rotating cutter-head and pressurized shield tunnelling during its operation. A number of abrasivity tests were carried out on 12 types of crushed rock samples including six sedimentary rocks and six crystalline igneous and metamorphic rocks. The results showed that the abrasivity of the samples increased as equivalent quartz percentages of the sample increased. It was also found that the texture of the samples has a great influence on their abrasivity. To evaluate the performance of the newly developed device, the same samples were tested by other current abrasivity methods including the Cerchar test, Laboratoire Central des Ponts et Chaussées (LCPC) test and soil abrasion test (SAT). Comparisons of the results indicated close correlations, especially with the results for the Cerchar and LCPC devices.

  • © 2013 The Geological Society of London
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this issue

Quarterly Journal of Engineering Geology and Hydrogeology: 46 (1)
Quarterly Journal of Engineering Geology and Hydrogeology
Volume 46, Issue 1
February 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

A newly developed soil abrasion testing method for tunnelling using shield machines

Ghodrat Barzegari, Ali Uromeihy and Jian Zhao
Quarterly Journal of Engineering Geology and Hydrogeology, 46, 63-74, 12 February 2013, https://doi.org/10.1144/qjegh2012-039
Ghodrat Barzegari
1Department of Engineering Geology, Tarbiat Modares University, Tehran, Iran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ali Uromeihy
1Department of Engineering Geology, Tarbiat Modares University, Tehran, Iran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: uromeiea@modares.ac.ir
Jian Zhao
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

A newly developed soil abrasion testing method for tunnelling using shield machines

Ghodrat Barzegari, Ali Uromeihy and Jian Zhao
Quarterly Journal of Engineering Geology and Hydrogeology, 46, 63-74, 12 February 2013, https://doi.org/10.1144/qjegh2012-039
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Quarterly Journal of Engineering Geology and Hydrogeology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A newly developed soil abrasion testing method for tunnelling using shield machines
(Your Name) has forwarded a page to you from Quarterly Journal of Engineering Geology and Hydrogeology
(Your Name) thought you would be interested in this article in Quarterly Journal of Engineering Geology and Hydrogeology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • Identification of wear issues in TBM tunnelling
    • Description of the newly developed abrasion test (NDAT)
    • Petrographic properties of the selected rock samples
    • Test procedure
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK
  • Constituents of potential concern for human health risk assessment of petroleum fuel releases
  • Coupling ground-penetrating radar and flowmeter investigations for the characterization of a fissured aquifer
Show more: Research Articles
  • Most read
  • Most cited
Loading
  • The temperature of Britain's coalfields
  • Hydrogeological challenges in a low-carbon economy
  • Coastal processes in the Russian Baltic (eastern Gulf of Finland and Kaliningrad area)
  • Uncertainty assessment applied to marine subsurface datasets
  • Buried (drift-filled) hollows in London – a review of their location and key characteristics
More...

Quarterly Journal of Engineering Geology and Hydrogeology

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
1470-9236
Online ISSN 
2041-4803

Copyright © 2021 Geological Society of London