Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member types access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Quarterly Journal of Engineering Geology and Hydrogeology
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Quarterly Journal of Engineering Geology and Hydrogeology

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member types access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

In situ seepage testing method for fractured zones of rock mass

Sihong Liu, View ORCID ProfileSiyuan Xu and Bin Zhou
Quarterly Journal of Engineering Geology and Hydrogeology, 54, qjegh2020-050, 17 September 2020, https://doi.org/10.1144/qjegh2020-050
Sihong Liu
1College of Water Conservancy and Hydropower Engineering, Hohai University, , People's Republic of China
Roles: [Conceptualization (Lead)]
  • Find this author on Google Scholar
  • Search for this author on this site
Siyuan Xu
1College of Water Conservancy and Hydropower Engineering, Hohai University, , People's Republic of China
Roles: [Conceptualization (Lead)]
  • Find this author on Google Scholar
  • Search for this author on this site
  • ORCID record for Siyuan Xu
  • For correspondence: i@siyuanxu.com
Bin Zhou
2Greenland Holdings Corporation Limited, , People's Republic of China
Roles: [Project administration (Lead)], [Writing - Original Draft (Equal)]
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The permeability characteristics of rock mass discontinuities are important in the stability of hydropower station projects. We propose a large-scale in situ seepage testing method and use this method to test gently dipping bedding faults (C3 zone) and steep faults (F14) in a hydropower station construction field in China. The in situ test results are compared with those of both undisturbed and reconstituted specimens. The comparison indicates that the largest critical hydraulic gradient and the smallest seepage permeability coefficient are obtained via in situ tests because they are performed under stress states that simulate the natural stress of the surrounding rock mass. The natural stress of the surrounding rock mass cannot be reflected in tests of undisturbed and reconstituted specimens.

  • © 2020 The Author(s). Published by The Geological Society of London. All rights reserved
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this issue

Quarterly Journal of Engineering Geology and Hydrogeology: 54 (1)
Quarterly Journal of Engineering Geology and Hydrogeology
Volume 54, Issue 1
February 2021
  • Table of Contents
  • About the Cover
  • Index by author
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

In situ seepage testing method for fractured zones of rock mass

Sihong Liu, Siyuan Xu and Bin Zhou
Quarterly Journal of Engineering Geology and Hydrogeology, 54, qjegh2020-050, 17 September 2020, https://doi.org/10.1144/qjegh2020-050
Sihong Liu
1College of Water Conservancy and Hydropower Engineering, Hohai University, , People's Republic of China
Roles: [Conceptualization (Lead)]
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Siyuan Xu
1College of Water Conservancy and Hydropower Engineering, Hohai University, , People's Republic of China
Roles: [Conceptualization (Lead)]
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Siyuan Xu
  • For correspondence: i@siyuanxu.com
Bin Zhou
2Greenland Holdings Corporation Limited, , People's Republic of China
Roles: [Project administration (Lead)], [Writing - Original Draft (Equal)]
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

In situ seepage testing method for fractured zones of rock mass

Sihong Liu, Siyuan Xu and Bin Zhou
Quarterly Journal of Engineering Geology and Hydrogeology, 54, qjegh2020-050, 17 September 2020, https://doi.org/10.1144/qjegh2020-050
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Quarterly Journal of Engineering Geology and Hydrogeology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In situ seepage testing method for fractured zones of rock mass
(Your Name) has forwarded a page to you from Quarterly Journal of Engineering Geology and Hydrogeology
(Your Name) thought you would be interested in this article in Quarterly Journal of Engineering Geology and Hydrogeology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • In situ seepage testing method
    • In situ seepage tests
    • Comparison with seepage tests on undisturbed and reconstituted specimens
    • Conclusions
    • Acknowledgements
    • Author contributions
    • Funding
    • Data availability statement
    • Correction notice
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • The thermal properties of the Mercia Mudstone Group
  • Development of a new empirical method for Tunnel Squeezing Classification (TSC)
Show more: Technical note
  • Most read
  • Most cited
Loading
  • The temperature of Britain's coalfields
  • Hydrogeological challenges in a low-carbon economy
  • Coastal processes in the Russian Baltic (eastern Gulf of Finland and Kaliningrad area)
  • Uncertainty assessment applied to marine subsurface datasets
  • Buried (drift-filled) hollows in London – a review of their location and key characteristics
More...

Quarterly Journal of Engineering Geology and Hydrogeology

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
1470-9236
Online ISSN 
2041-4803

Copyright © 2021 Geological Society of London