Index of Subjects

Page numbers preceded by the letter S refer to the Supplementary issue

Aberfan tip failures 103, 117, 118, 119, 120
Abergorchi Colliery tip failure (1931) 113, 115, 116
 mechanism of tip failure 113
 overtopping Nant Cwm Gau stream 113
 abstraction testing, single fissure, Longwood Quarry 331–332
 active subsidence 84, 86
 active tectonic zone, eastern Turkey, gas geochemistry 209–218
 alluvial aquifer, Yobe River 342–345
 Alps, hydrogeology 176
 alteration of plagioclases, in highly decomposed granite 19
 Alvera mudslide
 calculated and recorded displacements 337
 critical situation for stability 238
 geotechnical characteristic of the materials 235
 pore pressure thresholds and displacement 238
 shear strength regain in direct shear tests 239
 visco-plastic model 233–240
 anhydrite mining S20
 aquifers, Yobe River 341 et seq
 Aquitaine Basin 168
 Atlantic volcanic archipelagos, hydrogeology 178–179
 attenuation of ultrasonic compressional wave, calculated from frequency spectra 306, 307
 attenuation of ultrasonic waves, factors affecting 300, 302
 Austrian experience, lime pile stabilization 275

Bangkok, deep well pumping and subsidence 1–4
Bangkok Clay 1–2
basin inversion, Sellafield S22
beaches, progressive erosion 266
bed separation, above a longwall face 222
bed separation and fracturing, identification by geophysical logging 226–227
Bedwellty Colliery
 flow slide (November 1926), Straddling Brithdir Seam
 springline 108, 109, 112
 plan of flow slide 112
 Bingham’s body model 236
 Bitlis-Elazig Nappe 211
 Bitlis-Zagros Suture 211
blind validation, multiscale tracer testing in Lincolnshire Limestone 323
borehole geophysical logs 220–227
borehole geophysics, estimate of rock strength 221
 Borrowdale Volcanic Group (BVG) S6, S20, S22, Z33, S35, S36
 assumed hydraulically isotopic 66–67
 cleavage development S16
 deep groundwater composition S43, S44
 distribution of fault length traces in outcrop S77
 fracture flow S11
 groundwater composition S45
 hydraulic conductivity S7–S10
 late Pleistocene recharge S10
 salinity S47, S48
 volcanic entries S36–S37
BRE durability class, prediction from porosity 285–297
 BRE salt crystallization test 285
 weight loss and LDC 285–288
breakout analysis S18
brick earth
 of south Essex
 basic soil properties 150
 distribution of metastability 157
 engineering properties 147–161
 metastability 152–157
 micro-structure 159
 mineralogy 147–148
 particle size distribution comparison 151, 152
brines, East Irish Sea Basin S10
Brithdir Coal Seam, spring line 104
British Isles, hydrogeological map 169
British Province (hydrogeology) 168
Brockram S6, S21, S23–S24
BS1377: 1990: Part 2: method 7, inferior to determination from irregular Chalk lumps 247
Budleigh Salterton Pebble Beds 57–59
Bug’s Bottom, solution features 258
Building Research Establishment (BRE) limestone durability class (LDC) 285–297
building stone quality, ultrasonic test signal processing 299–308
building stones
durability 285–297
predictors of durability 286
Richardson’s Factor D 288
burial estimates, post Jurassic S22
BVG see Borrowdale Volcanic Group (BVG)
calcium ion migration 279
calcium ions migration, from piles 282
Carboniferous Limestone S23
Carboniferous rocks, Sellafield S21
Cefn Glas, plan of flow slide 112
Cefn Glas (January 1925), possible flow slide 108
cement coefficient classification, of rocks 74
Cerchar Abrasivity Tests 67
tunnel construction 74
Chad Formation 343
Chalk, dry density 241–248
Chalk fracture system characteristics, discussion 93–96
Chalk IDD variations 245–246
Chalk as a karstic aquifer, discussion 257–258 Cilfynydd
(December 1939) flow slide 116
cross-section 116
Cimaganda
rock slide 37–56
application of engineering systems 41–51
cause vs effect 45–47
discontinuity set number 49
geomorphology 38–39
in situ stress and instability 43, 51
LANDSAT imagery 40
lithology 39
matrix binary interactions 43–46
parameters affecting the system 41–43
rock mass strength 49
structure 39–40
(1698) 39
CIRIA Report No 79(1978) 67
clay and sesquioxide bonds, in Hong Kong residual soils 26
clod size, influence on soil permeability 250–251
coal mining, time-dependent subsidence 83–91
Coast Protection Authority 266
coastal mudslides, mechanics 57–64
Coastal Plain (CP) Regime S45, S49
groundwater movement S89–S90
topographically driven flow S87
collapse index, 152–155, 156
Colnbrook Landfill Site, permeability and moisture content 251
compressional tectonics, Turk-Iran High Plateau 209
compressional wave velocities, in rock specimens 304, 305, 306
computer-synthesised lithology 220–221
contaminated old collieries
possible pollutants 219
site investigations 219–231
continental climate, Western Europe 163
Craig-y-Duffryn, plan of tip failure 109
Craig-y-Duffryn slide (December 1910) 105, 109, 110
cross-hole hydraulic testing S5, S10
cross-hole seismic tomography S10, S11, S25
cubic law for fissure flow, invalid in a rough fissure 93
current tectonic regime S18
cutting tests, of rock 72
CWL, crystallization weight loss 285, 286, 287, 289 et seq.
Derwentwater S48
digital analysis, ultrasonic transmitted signals 299
discontinuity set, Cimaganda rock slide 49
discrete extraction testing (DET) S29–S30, S42, S43, S45
downhole flowmeters 226
downhole neutron logging 225
downhole permeability measurements 223–226
drift, hydraulic properties S65
drillability tests, of rock 72
drilling fluid contamination, corrections for S43
drilling fluid tracer S42
dry density
of Chalk 241–248
soil permeability and moulding moisture content 249–255
as a weathering index 27
dry density and liquid limit, as criteria for collapsible brickearth
153
dual porosity hypothesis 338
dual porosity model, limitations 321
durability
of building stones 285–297
of Jordan limestones 295
durability of building stones, predictors 286
dynamic subsidence profile, measured during mining 83
earthquake, ground motion attenuation relationships, Jordan
309–319
earthquake activity, Jordan tectonics 309–310
earthquake data file, Jordan S31, S32, S31, S34
earthquake perceptability radii, historical estimates 311
earthquakes
and groundwater changes S18
and surface fractures in eastern Turkey 211
East Irish Sea Basin (ISB) S6, S21, S41
brines S10
Tertiary intrusions S22
East Irish Sea Basin (ISB) Regime
conceptual hydrogeological models S86–S87
groundwater driven by basin processes S87
East Solent, historical changes of shorelines 267
Eastern Anatolian Fault, epicentres of large earthquakes 211
eastern France uplands, hydrogeology 171
eastern Turkey
geothermal springs 216
recent increase in seismicity 209
EDA RD-200 Radon detector 212–213
EDTA test for free calcium, lime migration 276
empirical RQD 205–207
distribution function for differently jointed rock masses 206
ENE lineaments, Lake District Massif S16
engineering classification, weathered rock masses 7–9
engineering index properties, south Essex brickearth 148–152
engineering judgement, and earthworks design in saprolitic soils 203
engineering properties, of south Essex brickearth 147–161
English China Clay, infra-red spectrography 279
environmental pressure measurement (EPM) S29–S30, S42, S45
environmental pressures, natural fluctuations S35
erosion, of beaches 265–266
Erzincan Earthquake (March 1992) 211
Erzurum, Eastern Turkey, destructive historical earthquakes 212
Erzurum Basin
gas geochemistry 209–218
geological hazard assessment and gas geochemistry 216, 218
geological history S11
historical seismicity 211–212
multi gas tests 216
radon anomalies 217
radon data 213, 214, 215, 216
radon flux tests 216
Erzurum Fault Zones, high risk for geological hazards 211
Erzurum Trough
eastern Turkey, depositional lithofacies 209
volcanic basement 209, 211
eureka pot, use in volume determination 243
failure mechanism in Littleham Mudstone, comparisons with
overconsolidated clays 64–65
fault length, trace distribution, in BVG outcrop S77
fault ratings, Cimaganda rock slide 47–49
fault zones, Sellafield S24–S25
faulting and fracture patterns, Sellafield S16
Fernhill Colliery, 1960 outburst failure 121
Fforchaman Colliery tip slide
cross-section of plan of debris slide (1928) 114
(October 1928) 110, 113, 114
plan of debris slide (1928) 110, 113, 114
fissure and matrix zone models, groundwater flow 321
fissure permeameter 327
Fleming Hall Fault Zone (FHFZ) S18, S21
flooding, effect on shear strength parameters 157
Florence/Beckermet haematite mines S41
flow in rough fissure, invalidity of cubic law 93
flow slides
South Wales Coalfield 123–124 See also under names of
individual locations
velocity, South Wales Coalfield 123
vertical interval and run-out 124
Flow Zones, Sellafield boreholes S9
fluid conductivity, in open holes, and contamination 227
fluid flow
through soils 249–250
influence of clot size 250–251
fold ratings, Cimaganda rock slide S1
FracMan fracture network code S76
fracture flow
Borrowdale Volcanic Group (BVG) S11 Sellafield S10
fracture groundwater flow models, Sellafield S73–S79
fracture imaging, by borehole geophysics 220
fracture maps, Longwood Quarry S34
fracture orientation, Longwood Quarry S34
fracture patterns, Sellafield S23
fracture surveys, Longwood Quarry S36
fractures in BVG, hydrogeologically significant S23
France, hydrogeological map 167
frequency spectra, ultrasonic compressional waves in rock specimens 306, 307
gas geochemistry, active tectonic zone, eastern Turkey 209–218
gas sampling, Erzurum area 212–216
geochemistry, Sellafield S10
geological hazards
high risk in Erzurum Fault Zones S21
indicated by Radon anomalies S21
geological history, Sellafield area S19
geological structure, Sellafield S16–S18
geochemistry, Sellafield S1–S12
go physical logging, wire line S4
go physical methods, use at contaminated old collieries 219–231
go physical surveys, Sellafield S4
go statistical conditional simulation S25
go technical and planning case study 133–146
geo thermal energy 179
geo thermal springs, eastern Turkey 216
Germany, hydrogeology 171, 172
Ghyben-Herzberg relation, seawater saline interface position S61
gibbsite, minor occurrence in immature Hong Kong soils S2

gibbsite and iron oxide minerals, weathered Hong Kong granite 20–21
Glennondra (1943), tip failure 117, 118
Glennondra Colliery, cross-section of tip 118
GMI Landsurveyor-I gas analyzer S23
GMI portable CO2 analyzer S23,203
Goethite, in saprolitic and residual soils S2
Goethite bonding, in saprolitic fill 33
Goodman’s relationship 185
granitic residual and saprolitic soils, classification 26–7 granitic saprolitic and residual soils, comparison in situ and transported behaviour 32–33
ground motion, amplification at Tangshan, China 97–101
groundwater
development of deeper resources in northern Nigeria 346
in northeast Nigeria, research requirements 354
past flow and mixing S7
use of in Western Europe 166
in Western Europe 163–164
groundwater dating 14C S52
interactions with polymer-based drilling fluids S52
groundwater flow
fissure and matrix zone models 321
in fissures, Lincolnshire limestone 321
Lincolnshire Limestone 325–326
and rock structure, Sellafield S25
groundwater flow modelling, Sellafield S59–S81
groundwater modelling concepts, Sellafield S60–S61
groundwater pressure variations, in fractures S11
groundwater recharge concepts, disregarded in northeast Nigeria S35
groundwater table fluctuations, northeast Nigeria S348–S351
groundwater tables, falling in eastern and southern Mali 350
groundwaters, old, at Sellafield S41
halloysite, predominant clay mineral in completely decomposed granite 19, 32
...

Hayling Island
beach variability 269–270
behaviour of artificially replenished shingle beach 265–271
littoral drift 267–269
post-replenishment beach changes 267–269
replenishment scheme 267
Hayling Island shoreline 266

heat pumps, use in France, Germany, Switzerland 164
hematite, in saprolitic and residual soils 21
Hills and Basement (HB) Regime S47
groundwater movement S91–S92
topographically driven flow S87–S88
historical changes, of shorelines within East Solent 267
historical earthquakes, Erzurum region 212
honeycombed structures, in alkali feldspars 20
Hong Kong
classification of weathered granite 3–35
igneous rocks 6–11
weathering and alteration of igneous rocks 7–9
Hong Kong residual soils, clay and sesquioxide bonds 26
Hong Kong saprolitic soils 199–200
influence of joint-planes on mass strength 199–204
joint strength 201–202
joint-planes and slope stability 199
mass strength 202–203
re-cementation 33
relict joints 200–201
secondary cementation along relict joints 202
stress-strain curves 201
Horasan-Narman Earthquake (1983) 211
hydraulic conductivity, Borrowdale Volcanic Group (BVG) S7–S10
hydraulic pulse testing
analysis 181–183
equipment for fast pressure testing 183
FEM simulation 184
field operations 183–184
numerical modelling of field tests 184–189
single fractures 181–192
comparison of field tests and modelling 189, 190
type curves for analysis 182
hydrochemical conditions, potential repository rock volume (PRV) S52–S55
hydrofracture measurements S18
hydrogeological models S25–S26
hydrogeological provinces, of Western Europe 165, 166–179
hydrogeological regimes (Sellafield), hydrochemical characteristics S45–S49
hydrogeological system, Sellafield S10–S11
hydrogeological testing
during drilling
discrete extraction testing (DET) 29–30
environmental pressure measurement (EPM) 29–30
full sector test (FST) 29–30
post-drilling 30–33
Sellafield 29–38
hydrogeological units, Sellafield 22–25
hydrogeology
of Sellafield S1–S12
conceptual models with impact of time 86–87
models with multiple processes 84–85
simple conceptual models S3–S84
of Western Europe 163–180
hydroxyl ion mobility, hydraulic transport 279
hydroxyl migration
due to diffusion 278
effect of clay type 278
in lime stabilization 277
Iberian Peninsula and the Balearic Island, hydrogeology 173
Indian research, lime pile stabilization 275
infra-red spectroscopy, English China Clay 279
infra-red spectros, untreated and lime-treated clay 280–281
infra-red spectrometry, used in study of mineralogy of lime stabilization 277–288
Institute of Freshwater Ecology (IFE) S41
intact dry density, calculations and errors 243–244
intact dry density (IDD)
of Chalk 241–248
measurement of control specimens 241–242
preferred method 244–245
intensity–magnitude–distance relations, Jordan 311, 315
interconnected porosity, Lincolnshire Limestone 329
International Hydrogeological Map of Europe 164
International Seismological Centre (ISC) 311
Irish Province (hydrogeology) 169–170
Irish Sea Basin (ISB)
regime S47
brines S47
Irish Sea Basin (ISB) regime, groundwater movement S89
irregular Chalk lumps, intact dry density 241–248
Israel Institute for Petroleum Research and Geophysics (IPRG) 311
ISSMFE, Subcommittee on Tropical and Residual Soils 11
Jerusalem Earthquake (1927) 310
joint intensity 205
joint strength, Hong Kong saprolites 201–202
joint-planes, influence on mass strength of saprolitic soils 199–204
Jordan
earthquake data file 311, 312, 313, 314
earthquake ground motion attenuation relationships 309–319
intensity-magnitude-distance relations 311, 315
peak ground acceleration attenuation relationships 316–318
peak ground acceleration-intensity-magnitude relations 315–316
Jordan limestones, durability 295
Jordan Seismological Observatory (JSO) 311
Jordan tectonics, crustal structure and earthquake activity 309–310
Jurassic, Sellafield S21–S22
Karasu Basin 209, 211
Kargapazari Formation 211
Kozeny–Carman equation 250
Lake District Boundary Fault Zone (LDBFZ) S18
Lake District Granites S20
Lake District Ice Sheet S16
Lake District Massif, ENE lineaments S16
LANDSAT imagery, Cimaganda rock slide 40
late Pleistocene recharge, Borrowdale Volcanic Group S10
lateral expansion of lime piles 274
LDC, prediction from porosity and saturation 285–297
lime migration
effect of cracks formation 280
laboratory studies 276
in lime pile stabilization of slopes 273–284
and strength of clay 280
lime pile stabilization
experience in Austria 275
experience in Thailand 275–276
field studies 282–283
field trials and ion migration 282–283
Indian research 275
of slopes 273–284
spacing related to diffusion rates 275
US experience 274–275 lime piles
lateral expansion 274
literature review 273–274
lime stabilization
dependent on extent of hydroxyl ion migration 279
laboratory investigation 277
mechanisms 277
lime treatment, honeycomb effect 282
lime-clay reaction 280–282
Lincolnshire Limestone
experimental site 323–325
experimental site of solute transport study 323
groundwater flow in fissures 321
laboratory determination of effective aperture 331
laboratory determination of hydraulic conductivity 329
laboratory determination of interconnected porosity 329
laboratory determination of permeability 331
modelling solute transport 321
modelling procedures 328
regional groundwater flow 325–326
solute transport controls 321–339
linear regression, porosity saturation and CWL 288
liquefaction, of south Essex brickearth specimens 161
lithology, computer-synthesised 220–221
Littleham Mudstone 57–65
comparison of failure mechanisms 64–65
rates of weathering 64
Littleham Mudstone and derivatives, geotechnical properties 60–64 littoral drift, Hayling Island 267–269
Llynfi Beds 105
Loire Valley
Miocene limestone 197
troglodyte dwellings 193–197
Turonian limestones 197
Longford Landfill Site, permeability and moisture content 251
longshore movement, of sediment 267
longterm calcium ion migration, from piles 282
longwall coal mining, time dependent subsidence 83–91
Longwood Quarry
abstraction testing 331–332
borehole drilling and logging 326, 327
field characterization of hydraulic properties 328–331
fracture maps 324
fracture orientation 324
fracture surveys 326
hydraulic connectivity 331
hydraulic property characterization 327–331
laboratory characterization of cores 328
lithology and stratigraphy 323
permeability and porosity variations near fissure in borehole 330
single bedding plane fissure tracer tests 334–335
site geology 326
slug testing 328, 330
Low Duffryn Colliery, tip failure 105, 109
LOWESS fitting of regression model 296–297
model for non-parametric regression 288–290
machine performance in tunnelling, prediction 67–81
machine tunnelling, and rock material properties 67–81
Maerdy Colliery flow slide (November 1911) 107, 108, 109
cross-section of flow slide 111
plan of tip flow slide 110
maritime climate, Western Europe 163
mass strength
Hong Kong saprolitic soils 199–204
lower bound for Hong Kong saprolites 203
mass strength and joint-planes, probability equation 202
material assessment, in site investigations for machine tunnelling 79–80
material weathering grades, in granites 11–12
mechanical stiffness, of a fracture 186
mechanics, of subsidence 88–89
Mercia Mudstone Group S21, S24
mercury porosimetry 303
Methyr Vale Colliery (Aberfan)
cross-section of flow slides 120
plan of flow slides 119
soil heap failure (1966) 103, 117, 118, 119, 120
metastable soils, Hong Kong 26
microfabric characterization 14
microfabric properties, and weathering grades 26
microfractures, hydrocarbon transport in East Anglian Chalk 321
microfracture and pore development, weathered Hong Kong granites 21–26
microgravity mapping, 2D 230–231
microgravity surveying, contaminated old collieries 227, 229–231
micropetrographic index, Iq 15
micropetrographic indices, Hong Kong granite 29–30
Midge Hall Valley Sewer Project 75
mine shaft location, microgravity surveying 231
mineral compositions, variation in weathered granite 16
mineral precipitation and tectonic history S23
mineral transformations, probable paths in Hong Kong granites 15
mineralogical changes, in lime stabilization 277–278
mineralogy and fabric, weathered Hong Kong granites 3–35
Miocene limestone, Loire Valley 197
moisture index
\[I_{mo} = 26-27\]
vs dry density, weathered Hong Kong granite 28
MODFLOW finite element code S61, S62
Moh’s Scale of hardness 74–76
moisture content vs permeability, London Clay 251
morphometric parameters, related to rapid spoil tip failure 106
MOSDAX packer system S32–S33
MOSDAX probes S5
moulding moisture content
and dry density 249–255
vs dry density 250
multi-packer monitoring S32–S33
multiple channelling, in fissure flow 338
Mynydd Corrwg Fechan
cross section of 1963 flow slide 123
tip failures 121, 122, 123
NAMMU finite element code S61, S65, S70
Nantweelaeth Colliery, plan of flow slides 120
Nantweelaeth Top Tip failure 118
NAPSAC fracture network code S76, S78
National Colliery slide
(November 1989) 103, 104, 107
plan of tip failure 107
National Earthquake Information Centre (NEIC) 311
National Rivers Authority (NRA) S41
Nigeria, shallow groundwater in northeast arid zone 341–355
Nirex, location of deep boreholes S3–S4
Nirex deep boreholes, O and H stable isotopes S49–S50
Nirex Site Characterisation Programme S40
noble gas analysis, Sellafield groundwaters S51
non-parametric regression, porosity saturation and CWL 288–290
North East Arid Zone Development Programme (NEAZP) S41
North East Nigeria uplands, recharge concepts 346–348
North Sea and Baltic Lowlands (hydrogeology) 170–172
Northern Anatolian Fault, epicentres of large earthquakes 211
numerical modelling, groundwater processes S7, S10
O and H stable isotopes, Nirex deep boreholes S49–S50
open-cast coal workings, Sellafield S21
outburst failure, Fernhill Colliery (1960) 121
outburst failures, South Wales Coalfield 124, 126
overcoaling S18
paleohydrogeology, Sellafield S53–S55
paleomagnetic temperature data S22
parametric studies, hydraulic pulse testing 186–188
Pare Colliery, plan of tip failures 121
Pare Colliery tip failures 118, 121
Paris Basin 166–168
peak ground acceleration-intensity-magnitude relations, Jordan 315–316
peak ground acceleration, attenuation relationships, Jordan 316–318
Pentre slide
cross-section of tip flow slide 108
(February 1909), overtipping of pre-existing failure surfaces 105, 109
plan of tip flow slide 108
Permin, Sellafield area S21
petrographic influences, on ultrasonic spectra 307
petrology, influence on ultrasonic wave propagation in rocks 300
Piuro rockslide (1668) 39
Plenmeller opencast coal site 133–146
effect of Stublack Fault 144–146
geological succession and structure 140
geotechnical activities 137, 138
ground investigation 134–140
overland conveyor 141–142
planning conditions 136
previous mining and groundwater 141
restoration 146
site mining operations 143–146
slope stability 143, 144, 145
statutory planning 146–143
point load strength
relationship to tensile strength 71, 73
relationship to unconfined compressive strength 71, 73
point load strength test 72
pollutants, at contaminated old collieries 219
pore pressure thresholds, and displacement 238
pore water, from Sherwood Sandstone Group S45
porosity saturation function, acceptable durability predictor 296
post-completion testing S5
post-drilling DETs (PDDET) S43
potential repository rock volume (PRV) hydrochemical conditions S53-S55
potential repository volume (PRV) S40, S41
Potential Repository Zone (PRZ) S21, S23, S40
predictability, of large scale instability, Cimaganda S4
pressure-time response, and fracture deformation 186
probabilistic risk analysis, Plenmeller opencast coal site 144
PRV, baseline hydrochemistry S41
pumping tests S5
PUNDIT, ultrasonic pulse test apparatus 302
Quaternary deposits, Sellafield S22, S24
radioactive waste
intermediate level (ILW) S1
low-level (LLW) S1
radioisotopic constraints on age, Sellafield groundwater S52
radon data, Erzurum area 213, 214, 215, 216
rainfall, trends in northeast arid zone of Nigeria 342
rapid failures of spoil heaps 103-332
rapid tip failure, morphometric parameters 106
rapid tip failures
factors associated with incidence 126-130
South Wales Coalfield
antecedent rainfall 129–130
chronology 125
geographical distribution 126
histogram of incidence 127
return periods antecedent rainfall 128, 129, 130
spoil type and tipping practice 126, 129
RCF shaft excavation S5
re-cementation, Hong Kong saprolitic soils 33
recharge estimation, Yobe River alluvial aquifer 346
recharge mechanisms, Yobe River alluvial aquifer 342–345
redox conditions, Sellafield PRV S55
regional geophysical analysis, Sellafield S16
relative interactive intensity, Cimaganda rock slide 46–47
relaxation times, for residual subsidence of the order of one year 91
relict joint structures, difficult to detect 203
relict joints, in Hong Kong saprolites 200–201
research requirements, northeast Nigeria groundwater 354
residual subsidence 84, 86–88
duration 90
resistivity profiling, at contaminated old collieries 227–228
reverse faults, Sellafield S16
rheological model, visco-plastic infinite slope 234–236
Rhondda Main (February 1928)
plan of flow slide 113
probably a flow slide 109, 113
Richardson’s Factor D 286, 288
risk level, associated with particular RQD value 207
risk values, RQD derived from scanlines 207
river flow trends, in northeast arid zone of Nigeria 342
Rock Characterisation Facility (RCF) S4, S102
rock characterization programme S95–S97
rock mass characterization
and natural slope stability 37–56
Sellafield S25
rock mass instability index (RMII) S51–S55
rock mass quality zonation 205–208
naturally fractured rock, Saudi Arabia 205–208
rock material properties, and tunnel construction 67–81
rock strength classification, for prediction in machine tunnelling 75–78
rock strength and hardness, tunnelling machine performance 67–68
RocTec software 220–221
RQD
different scanlines statistics 206
distribution of empirical 205–207
risks of adopting single value 205
RQD exceedence, risk for each scanline 207
St Bees Evaporites S21, S24
St Bees Shales S21, S24
salinity, Sellafield groundwater S24
salinity distribution, Sellafield S41
saprolite mass strength, probability equation 202
saprolites, Hong Kong 199–200
saprolitic fill, bonded with goethite 33
saprolitic soils, Hong Kong, influence of joint-planes on mass strength 199–204
satellite imagery S14, S16
Saudi Arabia, rock mass quality zonation 205–208
scanlines, RQD statistics 205–207
Schmidt hammer, and classification of weathered granites 31–32
Seascale Fault Zone (SFZ) S18
secondary cementation, Hong Kong saprolites 202
seismic reflection surveys, Irish Sea Basin S24
seismic surveys, Sellafield S2
seismic tomography S5
seismicity, recent increase in eastern Turkey 209
Sellafield S1–S12
3D disposition of saline interface, electromagnetic techniques S100
assessment cycle S97
conceptual model of hydrogeology S83–S93
deep groundwater salinity S10
drill stem testing (DST) S42
evolution of groundwater flow regime S100
fracture groundwater flow models S73–S79
freshwater and environmental water head S80
future studies of regional characterization S98–S100
geochemistry S10
geological structure S16–S18
geology and hydrogeology S95–S104
geology S6–S7
groundwater chemistry S39–S57
groundwater chloride concentration S46
hierarchy of conceptual models S96
hydrochemical characteristics S45–S49
hydrochemical data from deep boreholes S42–S45
hydrogeological numerical modelling S92
hydrogeological system S10–S11
hydrogeological testing S29–38
hydrogeology S7–S10
hydrological regimes S45–S49

366 SUBJECT INDEX
interface between hydrogeological regimes 92
modelling groundwater flow S9-S81
paleohydrogeology S3-S55
regional hydrogeological measurements S88-S89
seismic surveys S2
three-dimensional groundwater flow model S71-S73
two-dimensional groundwater flow models S61-S71
upward water leakage to Drift S65
Sellafield conceptual hydrogeological model S41, S52-S53
Sellafield groundwaters
radioisotopic constraints on age S52
recharge temperatures S50-S52
Sellafield PRV, redox conditions S55
Sellafield salinity distribution S41
SEM photomicrography, south Essex brickearth 149
Sellafield salinity distribution S41
SHT/STRT/STRA, finite-difference/finite-element code $66, $77
SHT/STRT/STRA, synthetic lithology 220-221
Shore Scleroscope tests, machine tunnel construction 72-74
shore strengths, of relict joints in Hong Kong saprolites 203
shore strengths regain, Alvera mudslide materials 239
shore wave velocities, in rock specimens 304, 305, 306
Shore Sandstone Group (SSG) S6, S21-S22, S24, S33, S41
shallow groundwater, northeast arid zone of Nigeria 341-355
shallow groundwater, northeast arid zone of Nigeria 341-355
shallow unconfined aquifers, responsiveness to environmental
changes 351
shallow unconfined aquifers, responsiveness to environmental
changes 351
shear strength, of relict joints in Hong Kong saprolites 203
shear strength regain, Alvera mudslide materials 239
shear wave velocities, in rock specimens 304, 305, 306
Sherwood Sandstone Group (SSG) $6, $21-$22, $24, $33, $41
Shore Scleroscope Rebound Values 67, 72, 73
Shore Scleroscope, rebound hardness (Hs) and tensile strength
Shore Scleroscope tests, machine tunnel construction 72-74
single fissure hydraulic testing
Longwood Quarry 331-332
injection data 336-337
modelling drawdowns 333-334
single fissure tracer testing, Longwood Quarry, breakthrough
curves 337, 338
sinkholes, not to be used for infiltration drainage 258
site investigation
contaminated old collieries 219-231
geophysical methods 219-231
Skiddaw Group S20
slickensided surfaces, on relict joints 201
slickensided surfaces, Hong Kong saprolites 201
cap stability
Hong Kong saprolite soils 199
Plenmeller opencast coal site 143, 144, 145
probabilistic risk analysis 144
rock mass characterization for 37-56
slope stabilization, lime piles 273-284
slip testing, Longwood Quarry 328, 330
soil permeability, and dry density 249-255
solute transport controls, Lincolnshire limestone 321-339
solution features, Bug’s Bottom 258
north Essex, engineering properties of brickearth 147-161
south Essex brickearth
liquefaction of specimens 161
shear strength 157-159
effects of flooding 157-159
South Morecambe gas field
halite undersaturated Triassic sandstones S41
Saltine brines S41
South Wales Coalfield
dehis slides 124 See also under names of individual locations
rapid failures of spoil heaps 103-132
spoil heaps, rapid failures in South Wales Coalfield 103-132
SPT and dry density, weathered Hong Kong granite 29
Stanford Dingley, tracer tests 257-258
ultrasonic compression wave, attenuation 306, 307
ultrasonic pulse testing, experimental apparatus and proced-ures 302-303
ultrasonic pulse testing, experimental apparatus and proced-ures 302-303
ultrasonic pulse testing, experimental apparatus and procedures 302-303
ultrasonic rock testing, factors affecting wave propagation 299–302
ultrasonic test apparatus (PUNDIT) 302
ultrasonic test signal processing, building stone quality 299–308
ultrasonic transmitted signals, digital analysis 299
ultrasonic velocities, in rock specimens 304
ultrasonic wave attenuation, in rock 300, 302
ultrasonic wave frequencies, transmission through rock specimens 304, 305, 306
ultrasonic wave propagation, in rock, influence of moisture 302
ultrasonic transmitted signals, digital analysis 299
US experience, lime pile stabilization 274–275

Valchiavenna
 history of slope instability 40–41
 instability of natural slopes 37
 velocity profile, infinite slope 236
vertical infiltration, Yobe River alluvial aquifer 345–346
vertical salinity variations, Sellafield S45
Vertical Seismic Profiling (VSP) S4, S6
viscoelastic model, for subsidence 85–86
visco-plastic model, Alvera mudslide at Cortino d'Ampezzo 233–240

water abstraction and consumption, northeast Nigeria 352–353
water abstraction technology, northern Nigeria 346
Weardale Granite, warm saline groundwater S48
weathered granites, mineralogy and fabric properties 17–27
weathered Hong Kong granite
classified by dry density 28
microfracture and pore development 21–26
mineralogy and fabric 3–35
mobiles index vs dry density 28
Schmidt hammer classification 31–32
SPT and dry density 29
weathering
coastal landslide 57–65
quantification of 13–15
weathering indices, Hong Kong granites 26–32
weathering processes, Hong Kong igneous rocks 7–9
weathering rates, Littleham Mudstone 64
West Down Beacon landslide 57–65
West European major rift valleys, hydrogeology 177–178
Westbay MP systems S5
Westbay multipacker system S34–S35
Western Europe
 hydrogeological provinces 165, 166–179
 hydrogeology 163–180
Windermere Group S20–S21
wire line, geophysical logging S4
X-ray diffraction patterns, soil grades of weathered granites 15, 17
X-ray diffractometer, brickearth of south Essex 161
xanthan polymer, for deep drilling S42
Yobe River
 alluvial aquifer 341 et sec.
 alluvial aquifer
 groundwater abstraction and management 346
 recharge estimation 346
 recharge mechanisms 342–345
 river aquifer interaction 345–346
Yorkshire Coalfield 84
zonation, rock mass quality, Saudi Arabia 205–208
zones of locally enhanced hydraulic conductivity (ZLECs), Sellafield S77
Index of Localities

<table>
<thead>
<tr>
<th>Alps 163, 171</th>
<th>Gashua 342, 345, 346, 353</th>
<th>Netherlands 170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian 37</td>
<td>Gashua-Dapchi 347</td>
<td>Nguru 353</td>
</tr>
<tr>
<td>Alvera 233</td>
<td>Gashua-Yau 346</td>
<td>Niger 350</td>
</tr>
<tr>
<td>Apennines 174–5</td>
<td>Geidam 353</td>
<td>Nigeria 341–355</td>
</tr>
<tr>
<td>Aquitaine 168</td>
<td>Germany 163, 170, 171, 172, 177</td>
<td></td>
</tr>
<tr>
<td>Austria 273, 275</td>
<td>Ghana 350</td>
<td>Par 166</td>
</tr>
<tr>
<td>Avignon 173</td>
<td>Gondo Plain 350</td>
<td>Peterlee 87</td>
</tr>
<tr>
<td>Azores 178</td>
<td>Gran Canaria 179</td>
<td>Piuro 39</td>
</tr>
<tr>
<td>Balearic Islands 173–174</td>
<td>Grantham region 325</td>
<td>Poitiers 166</td>
</tr>
<tr>
<td>Bangkook, Thailand 1–4</td>
<td>Gulf of Aqaba 310</td>
<td>Porto Santo 179</td>
</tr>
<tr>
<td>Barogo 350</td>
<td>Hadejia-Jama'are-Yobe 343, 347</td>
<td>Pyrenees 163, 168, 177</td>
</tr>
<tr>
<td>Belgium 170</td>
<td>Haltwhistle 146</td>
<td>Sahara 179</td>
</tr>
<tr>
<td>Berkshire 257–258</td>
<td>Hanege 213</td>
<td>St Louis, Senegal 351</td>
</tr>
<tr>
<td>Black Ven, near Charmouth 65</td>
<td>Hayling Island 265–271</td>
<td>Sakalikesik 213</td>
</tr>
<tr>
<td>Blankney 324</td>
<td>Hong Kong 5–35, 199–204</td>
<td>Salvagens 178</td>
</tr>
<tr>
<td>Bogaz 215</td>
<td>Iberian Peninsula 176–177</td>
<td>Sardinia 177, 178</td>
</tr>
<tr>
<td>Borno State, Nigeria 341</td>
<td>Italian Central Alps 37</td>
<td>Saudi Arabia 205–208</td>
</tr>
<tr>
<td>Botswana Kalahari 352</td>
<td>Italy 163</td>
<td>Sellafiel S1–12, S13–S27, S29–S38,</td>
</tr>
<tr>
<td>Budleigh Salterton, East Devon 57</td>
<td>Jama-are 346</td>
<td>Senegal 351, 353</td>
</tr>
<tr>
<td>Burkina Faso 350, 352, 353</td>
<td>Japan 273</td>
<td>Sesley 267</td>
</tr>
<tr>
<td>Caithness S1</td>
<td>Jeddah-Makkah 207</td>
<td>Sicily 176</td>
</tr>
<tr>
<td>Calder Valley S41</td>
<td>Jerusalem 310</td>
<td>Soguk Cermik 213</td>
</tr>
<tr>
<td>Canaries 178</td>
<td>Jordan 309–319</td>
<td>South Wales Coalfield 87, 103–132, 130</td>
</tr>
<tr>
<td>Caversham, Berks 258</td>
<td>Kajemarum 352 Kan 213</td>
<td>Southend 147</td>
</tr>
<tr>
<td>Charmouth, Dorset 65</td>
<td>Kargapazari Plateau 211</td>
<td>Spain 163, 173, 174</td>
</tr>
<tr>
<td>Chichester Harbour 266</td>
<td>Kaska 351, 352</td>
<td>Stambridge 147</td>
</tr>
<tr>
<td>Chiftlik 215</td>
<td>Koutiala 350</td>
<td>Stanford Dingley, Berkshire 257–258</td>
</tr>
<tr>
<td>China 273</td>
<td>Lake Chad 347</td>
<td>Stripa 181</td>
</tr>
<tr>
<td></td>
<td>Lake District S21</td>
<td>Sweden 181</td>
</tr>
<tr>
<td></td>
<td>Langstone Harbour 267</td>
<td>Switzerland 163</td>
</tr>
<tr>
<td></td>
<td>Lanzarote 179</td>
<td>Taff River 116</td>
</tr>
<tr>
<td></td>
<td>Lazkomu 213</td>
<td>Tangshan, China 97—101</td>
</tr>
<tr>
<td></td>
<td>Lebanon 309</td>
<td>Tenerife 179</td>
</tr>
<tr>
<td></td>
<td>Lincolnshire 323</td>
<td>Thailand 273, 275</td>
</tr>
<tr>
<td></td>
<td>Loire Valley, France 193–197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lombardy, Plain of 163</td>
<td>Tukur 209–218, 309</td>
</tr>
<tr>
<td></td>
<td>Longwood Quarry 324, 326, 327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madeira 178</td>
<td>Valchiavenna, Italian Central Alps 37</td>
</tr>
<tr>
<td></td>
<td>Madrid 174</td>
<td>Yau 345, 346</td>
</tr>
<tr>
<td></td>
<td>Mahanda 213</td>
<td>Yenishehir 215</td>
</tr>
<tr>
<td></td>
<td>Mali 353</td>
<td>Yobe River 341 et sec.</td>
</tr>
<tr>
<td></td>
<td>Marduluk 213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midge Hall Valley 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Munich 177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nant Cwn Gau 113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nant Gwnm Parc 24, 118</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index of Authors

Alkali, A. G. 341
Al-Rawahy, S. Y. S. 83
Anjeli, M.-G. 233
Arthur, C. D. 67
Au, S. W. C. 99

Bath, A. H. S39
Bell, F. G. 147
Black, J. H. S83
Bland, C. H. 285
Brightman, M. A. S83

Carter, R. C. 341
Chaplow, R. S1
Crampon, N. 163
Crawford, M. B. S39
Culshaw, M. G. 147
Custodio, E. 163

de Freitas, M. H. 299
Downing, R. A. 163

Eddleston, M. 1
Evans, B. M. 209

Fahmi, K. J. 309
Forster, A. 97, 193
Forster, S. C. 193

Gasparetto, P. 233
Glendinning, S. 273
Goulty, N. R. 83
Grainger P. 57, 209
Greswell, R. 321

Heathcote, J. A. S59
Herbert, A. W. S59
Hodgson, R. L. P. 57
Howarth R. J. 285
Hudson, J. A. 37
Hughes, D. B. 133
Husein Malkawi, A. J. 309
Hutchinson, J. N. 103

Irfan, T. Y. 5
Jackson, P. 219
Jackson, P. D. 97
Jones, M. A. S59

Kalaugher, P. G. 57
Kalkan, E. 209

King, M. S. 299
Lamont-Black, J. 241
Langdon, N. J. 249
Littleboy, A. S95
Lloyd, J. W. 321

Mackay, R. 321
Mazzoccola, D. F. 37
McCartney, R. A. S39
Menotti, R. M. 233
Merefield, J. R. 209
Metcalf, R. S39
Michie, U. S13
Moh'd, B. K. 285
Mortimore, R. N. 241

Norbury, D. R. 133
Northmore, K. J. 147

Onions, K. R. 219

Pasuto A. 233
Price, M. 93, 257

Richards, H. G. S39
Riley, M. S. 321
Rogers, C. D. F. 273
Rutqvist, J. 181

Sadagah B. H., 205
Salih Bayraktutan, M. 209
Sangha, C. M. 249
Sen, Z. 205
Siddle, H. J. 103
Silvano S. 233
Sutton, J. S. S29

Valdeon, L. 299

Walden, P. J. 249
Ward, R. S. 321
Whitcombe, L. J. 265
Whitworth, K. 219
Williams, G. M. 321
Wright, M. D. 103
Wright, S. P. 249

Xianzhong Li 97

Yilmaz, M. 209
We wish to thank the following people for their assistance with the reviewing of papers submitted to QJEG during the past year.

P. Aldous R. W. Herbert K. Pye
J. C. R. Arthur P. Hobbs K. R. Rushton
K. Ball R. Hocking R. Sage
A. Berry J. Holden J. H. F. Sedman
E. Bromhead D. Holt I. Simms
L. Clark T. Irfan E. Valentine
M. Clark D. P. Jefferson J. J. van Wonderen
B. Clarke J. Land G. West
M. Edmunds D. McCann I. White
S. S. D. Foster D. Muir Wood T. Yates
P. Grainger R. Musson
M. Heath J. D. Petley
Contents of Volume 29

Part 1 February 1996

M. Eddleston: Photographic Feature: Structural damage associated with land subsidence caused by deep well pumping in Bangkok, Thailand ... 1

T. Y. Irfan: Mineralogy, fabric properties and classification of weathered granites in Hong Kong .. 5

D. F. Mazzoccola & J. A. Hudson: A comprehensive method of rock mass characterization for indicating natural slope instability .. 37

C. D. Arthur: The determination of rock material properties to predict the performance of machine excavation in tunnels .. 67

N. R. Goulty & S. Y. S. Al-Rawahy: Reappraisal of time-dependent subsidence due to longwall coalmining .. 83

Discussion on 'Chalk fracture system characteristics: implications for flow and solute transport' by P. L. Younger & T. Elliot .. 93

Part 2 May 1996

A. Forster, P. D. Jackson & Xianzhong Li: Photographic Feature: Ground motion amplification: an example from the city of Tangshan, China .. 97

H. J. Siddle, M. D. Wright & J. N. Hutchinson: Rapid failures of colliery spoil heaps in the South Wales Coalfield .. 103

D. B. Hughes & D. R. Norbury: Plenmeller opencast coal site: a geotechnical and planning case study .. 133

K. J. Northmore, F. G. Bell & M. G. Culshaw: The engineering properties and behaviour of the brick earth of south Essex .. 147

N. Crampon, E. Custodio & R. A. Downing: The hydrogeology of Western Europe: a basic framework .. 163

J. Rutqvist: Hydraulic pulse testing of single fractures in porous and deformable hard rocks .. 181
Part 3 August 1996

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Forster & S. C. Forster: Photographic Feature: Troglodyte dwellings of the Loire Valley, France</td>
<td>193</td>
</tr>
<tr>
<td>S. W. C. Au: The influence of joint-planes on the mass strength of Hong Kong saprolitic soils</td>
<td>199</td>
</tr>
<tr>
<td>M. Salih Bayraktutan, J. R. Merefield, P. Grainger, B. M. Evans, M. Yilmaz & E. Kalkan: Regional gas geochemistry in an active tectonic zone, Erzurum Basin, eastern Turkey</td>
<td>209</td>
</tr>
<tr>
<td>K. R. Onions, K. Whitworth & P. Jackson: Application of geophysical methods to site investigations at contaminated old colliery sites</td>
<td>219</td>
</tr>
<tr>
<td>M.-G. Angeli, P. Gasparetto, R. M. Menotti, A. Pasuto & S. Silvano: A visco-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy</td>
<td>233</td>
</tr>
<tr>
<td>S. P. Wright, P. J. Walden, C. M. Sangha & N. J. Langdon: Observations on soil permeability, moulding moisture content and dry density relationships</td>
<td>249</td>
</tr>
<tr>
<td>M. Price: Discussion on 'The Chalk as a karstic aquifer: evidence from a tracer test at Stanford Dingley, Berkshire, UK' by D. Banks, C. Davies & W. Davies (QJEG, 28, S31-S38)</td>
<td>257</td>
</tr>
</tbody>
</table>

Book Reviews

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Reviews</td>
<td>259</td>
</tr>
</tbody>
</table>

Part 4 November 1996

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. J. Whitcombe: Behaviour of an artificially replenished shingle beach at Hayling Island, UK</td>
<td>265</td>
</tr>
<tr>
<td>C. D. F. Rogers & S. Glendinning: The role of lime migration in lime pile stabilization of slopes</td>
<td>273</td>
</tr>
<tr>
<td>B. K. Moh'd, R. J. Howarth & C. H. Bland: Rapid prediction of Building Research Establishment limestone durability class from porosity and saturation</td>
<td>285</td>
</tr>
<tr>
<td>L. Valdeon, M. H. de Freitas & M. S. King: Assessment of the quality of building stones using signal processing procedures</td>
<td>299</td>
</tr>
<tr>
<td>Abdallah I. Husein Malkawi & K. J. Fahmi: Locally derived earthquake ground motion attenuation relations for Jordan and conterminous areas</td>
<td>309</td>
</tr>
<tr>
<td>R. C. Carter & A. G. Alkali: Shallow groundwater in the northeast arid zone of Nigeria</td>
<td>341</td>
</tr>
</tbody>
</table>

Book Reviews

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Reviews</td>
<td>357</td>
</tr>
</tbody>
</table>

Indexes

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexes</td>
<td>361</td>
</tr>
</tbody>
</table>
CONTENTS

Supplement 1 May 1996

The Geology and Hydrogeology of the Sellafield Area. Proceedings of the Nirex Seminar, 11 May 1994

R. Chaplow: The geology and hydrogeology of Sellafield: an overview S1

U. Michie: The geological framework of the Sellafield area and its relationship to hydrogeology... S13

J. S. Sutton: Hydrogeological testing in the Sellafield area .. S29

J. A. Heathcote, M. A. Jones & A. W. Herbert: Modelling groundwater flow in the Sellafield area S59

J. H. Black & M. A. Brightman: Conceptual model of the hydrogeology of Sellafield S83

A. Littleboy: The geology and hydrogeology of the Sellafield area: development of the way forward ... S95

The geology and hydrogeology of the Sellafield area (11 May 1994): Chairmen's remarks and discussions. ... S105